Fuzzy Inference Systems Optimization

نویسندگان

  • Pretesh B. Patel
  • Tshilidzi Marwala
چکیده

This paper compares various optimization methods for fuzzy inference system optimization. The optimization methods compared are genetic algorithm, particle swarm optimization and simulated annealing. When these techniques were implemented it was observed that the performance of each technique within the fuzzy inference system classification was context dependent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EvoNF: A Framework for Optimization of Fuzzy Inference Systems Using Neural Network Learning and Evolutionary Computation

Several adaptation techniques have been investigated to optimize fuzzy inference systems. Neural network learning algorithms have been used to determine the parameters of fuzzy inference system. Such models are often called as integrated neuro-fuzzy models. In an integrated neuro-fuzzy model there is no guarantee that the neural network learning algorithm converges and the tuning of fuzzy infer...

متن کامل

The Prediction of Forming Limit Diagram of Low Carbon Steel Sheets Using Adaptive Fuzzy Inference System Identifier

The paper deals with devising the combination of fuzzy inference systems (FIS) and neural networks called the adaptive network fuzzy inference system (ANFIS) to determine the forming limit diagram (FLD). In this paper, FLDs are determined experimentally for two grades of low carbon steel sheets using out-of-plane (dome) formability test. The effect of different parameters such as work hardening...

متن کامل

Voting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems

some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...

متن کامل

Voting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems

some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...

متن کامل

Design On-Line Tunable Gain Artificial Nonlinear Controller

One of the most important challenges in nonlinear, multi-input multi-output (MIMO) and time variant systems (e.g., robot manipulator) is designing a controller with acceptable performance. This paper focused on design a new artificial non linear controller with on line tunable gain applied in the robot manipulator. The sliding mode fuzzy controller (SMFC) was designed as 7 rules Mamdani’s infer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1110.3385  شماره 

صفحات  -

تاریخ انتشار 2011